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I. INTRODUCTION

Predicting the moment exerted by a liquid payload in a spinning and
coning projectile is a problem of considerable interest to the Army.
Stewartson! considered the linear problem of calculating the payload moment
through the use of separation of variables and eigenvalue expansions for-an
inviscid liquid in a cylindrical cavity. First order viscous boundary layer
corrections to the Stewartson theory were carried out by Wedemeyer? ard
Murphy.3 A method for calculating the linear liquid moment using the full
viscous equations with boundary layer corrections confined only to the endcaps
was also presented by Gerber and Sedney.* They have recently extended this
theory to eliminate the boundary layer correction at the endcaps.®

Liquid payloads contained in a highly permeable material have also been
of interest to the Army for some time. Laboratory tests and flight tests have
shown that a highly permeable medium can significantly reduce the spin-up time
of a liquid payload.® Flight stabi]it% for liquid saturated permeable
payloads has also been examined by D'Amico.

This report extends the Stewartson problem by considering a cylindrical
cavity filled with a permeable medium that is impregnated with an inviscid
liquid. A further modification is introduced by segmenting the cavity, along
the symmetry axis, into a sequence of equal length cylinders. Each of these
cylinders is separated by impermeable endcaps. The porous media is modeled by
a drag term, which is proportional to the velocity field, added to the linear-
ized Euler equations. This analysis examines the induced liquid moment as a
function of parameters found by Stewartson plus parameters describing the
porous media and the number of segments in the cylindrical cavity.

The nomenclature in this report is the same as that used by Murphy.3 In
particular, this means that the 1iquid moment can be represented as the
complex quantity:

i

Transverse Moment = mL62$2 T [cLSM + 9 CLIMJ KC e ©

(1.1)
where
m is the mass of liquid in a fully-filled cavity,
a 1is the maximum radius of the container,

$ s the inertial spin rate of the container along the
symmetry axes,

t is the ratio of coning rate to spin éc/é,
CLsM is the liquid side moment coefficient,
CLgm 1s the liquid in-plane moment coefficient,

Ke 1s sin a. is the precession angle.
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[ 11. LIQUID MOMENT

v

o

id Two coordinate systems, each with X-axis along the projectile symmetry

axis, are used: the missile-fixed (X, Y, Z) system and the non-rolling XYZ

W system with the i-axis initially pointing downward. Introduce an earth-fixed
&. axes (Xgs Ya» Ze) with Xe-axis in the direction of the velocity vector and Ze
ﬁ: downward. Let a unit vector in the direction of the X-axis have earth-fixed
o components (nyp, Nyg» Nzg). The angle of attack @ in the (X, ¥, Z) system is
'\ -
f& the projection on the XZ-plane of the angle between the X-axis and the velo-
§? city vector. The angle of sideslip B is the projection of the same angle onto
N the XY-plane.
ja The kinematic behavior of the spinning projectile is the sum of two
ﬂk coning motions:3
K}
u -~ - 14 14,

W E=8+1ia=K e + K, e (2.1)
‘k. where

. In (KJ/KJO) EJ TJ¢

¢.J ¢J’O + TJ' ¢

o 6= it
b
(

\ (6 > 0) is the spin rate and Kin» @50 are constants.
?‘ ITI. EQUATIONS OF LIQUID MOTION IN PORQOUS MEDIA
k The following analysis models the steady state response of a liquid
P i flowing in a porous medium confined to a cylindrical cavity contained in a
. spinning and coning projectile. The objective of this theory is to predict
; thesliquid moment resuiting from coning or spiral motion which is specified
~ by
2 oK eSt (3.1) f
- where

o
» . ¢,
: 0 .
’: K = KjO e I, j=1lor2

< S = (ej + 1)rj

B

N 2

N ‘
I.

it

AT AT S AL A T LA A A R S N A - N RN LY AT TN e T T e e S p R e e g e T s A
2‘.‘1_.‘!-\. A Q.O.s.o,.’..n! 3 .' ~ . o XY K , N N"k n ‘\' e Y ” ol " < .c.‘

e e e N NaF WM



)
K]

18 00" 007 0" (At 130 100 gt 1a® 0a0 UV ¥ 4ot Gat hh pu RV’ 079 040 0a® 10at Ba® ba® bad 00" 0t Bat ta¢ MV Bal 000 Lt a0 0 RA LS AR’ Y PR TR TR Yy

.....

The conservation equations governing the motion of the confined liquid
are the continuity equation and a modified Euler-momentum equation. The
modification is one that is commonly used to describe the flow of liquid
through a porous medium. This consists of an additional term given by:

&>

> y + . VR
Dr = - (VR) = - PLa¢2cr(;g) (3.2)
where

u is the dynamic viscosity

k is the porosity (dimensions of length?)
Y
VR is the velocity of liquid relative to the porous medium

oL is liquid density
<>
Dr is a pressure gradient induced by resistance of the
porous media to fluid flow.® C_ = —*—is a
P Ke
dimensionless coefficient which is a measure of this
pressure gradient,

Physical reasons for using such equations can be found from the arguments used
in establishing Darcy's Law.?

Let (r,8,x) be cylindrical polar coordinates fixed to the earth frame and
(v,W,U) be the corresponding components of velocity. For small angles, the
position vector of any point in the projectile has components?3

r=r - Kj ; cos (¢j - 5) (3.3)
X = x + Kj r cos (¢j - 5) (3.4)
6=06+0 (k2) (3.5)

where tilda (~) quantities are measured in the non-rolling system. Equations
(3.3 - 3.5) lead to the velocity components

V, = RG(s - 1)rk e3¢ 7 1% (3.6)

|

= RIB(s - 1)xk %% - 1€ (3.7)

V. =
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Vg = ér + R{i¢(s - i)xﬁ eS¢ - 10y (3.8) ;.

where ,‘

! - ()

N R{} =[ {} + {1} }/2 = Real part of {} . A

1 g
\' *

Let the velocity, V , and pressure, p, fields have the form:

,; > L d N ~ >

4 V=qg+¢ e, xr

' : (3.9)

f P ¢2r2

, P=p+ »

by 2 .
‘]

h A A A X

! where €., €g, € are the unit vectors in the (r,8,x) directions., The E

variables a = (v,w,u), and p are small perturbations of O(KJ).

K. Non-dimensionalizing all 1lengths by the cylinder radius a and velocities

. by a¢, plus assuming periodic disturbances of the form s
4
: (voW,u,p) = (v (r,x), W (ryx), p (ryx)) e3871° (3.10) X
L ¢
X allows the continuity and momentum equations to be written as .
[ _ N
: Vv _ W, 8u (3.11)
ar r r ax '8
‘ (s - 1) a +2e X a = -Up - Cr[a + (s - 1) (x,-1x,-r)]. 3.12) o
p ¢
W The components of Eq. (3.12) take the form =
K .
d ap . .
YV - 2w + £ = - (s-i) x Cn (3.13) g
ar .
. ip - . ;:
\ W+ v - = =1 (s-1) x C_ (3.14) o,
r\ i
yu + 22 - (s-i) r C. (3.15)
¥ X 7
; »
*
b d
4 :
3 ;
\' .-
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i where 0<r <1, h+f ¢x<¢h-f f = fineness ratio \
@ Y = s-i + Cr 4
e and h is the center of mass location along the symmetry axis. The non- ;
- homogeneous terms of Equations (3.13 - 3,15) suggest using the transformations .

(s-1) x C.

3 vVEVy s ———— (3.16)
i (v + 2i)

{ '

-+ i(s-1) x C,

W= Wy ————— (3.17)
" (y + 21)
1% (
Y ]
b, (s-1) r C,. {
o u = uH + — (3018) ;
y

o

3 4
N in the equations of motion which reduces them to a single equation for the |
- pressure p

2 2 2

> 3% .13 _p . (¥+4) 3% (3.19)
b ar2  rar r? ¥y2  3x? '

-
-

L -
»’

Similarly, the solution p is related to the following physical quantities of ,

interest:
¥
v
.' 3
.« = ——[HR. 2Ry (3.20)
D Y2+4 r ar
: W= —— [ TR, 5 2 (3.21)
9 Y2 + 4 r ar
.,: A
i = -2 22 (3.22)
- Y X

The cylindrical cavity is assumed to consist of N chambers with circular

cross section and height &4 = 2f/N, each separated by impenetrahle endcaps as

depicted in Figure 1.
e :
rv -~ g A L]
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5: The boundary conditions for Eq. (3.19) are the normal velocity of the

N fluid at the boundary must equal the normal velocity of the wall and all flow

" variables remain finite. This means:

. .

) f

,' 2. at x=h - f+n (& (3.23) ?
P aX N ,
d n=0,1,...N

N R .

2ip - ¥ .. 2xs (s-1) (s-3i+Cr) at r =1 (3.24)

X, ar

‘I

"

_ p=0 atr=20 (3.25)
s' d
[ ~

! where p=p+ xr (s-i)2, (3.26)

{55

This boundary value problem is similar to the problem considered by
Stewartson! and can be shown to have the solution

b Y Y55

p=-xr (s-i)2 + xs (s-1) [2(h~f) + (2n+1) A] r +

y w Tk het (3.27) ;
2 16fs (s-1)(y-21) Z Jy (Ar) cos == (x-h+f-na) ,
W n2 N keodd K2 [(21+7) 91(0) - v A dg (3]
b7 :

_ 2 2 42 g2

.\. where a2 = . (Y7H4) NTKEnT N = 1,2,3,...

1 % Yz 4 f"2

) n=0,1,....N
L

, and the J, are the Bessel functions of the first kind. If Yy is pure
o imaginary, the transcendental denominator in Eq. (3.27) will have zeroes.
' This resonant condition occurs whenever t e + C =0 and 1 is one of the )
- inviscid Stewartson! eigenfrequencies. 1
S: IV, LIQUID MOMENT EQUATIONS

Nﬂ
g0 The moment induced by the liquid contained in the segmented cavity is

} calculated from the time derivative of the anguiar momentum field. Non- -

~ dimensionalizing this moment with 2ma3 f p, allows the moment in the YX plane ¢
o to be expressed as a single complex quantity3

q




x where CLM = CLSM (r,e,Cr,f) + i CLIM (r,e,cr,f).
4
A
: The unit vectors for the earth-fixed cylindrical coordinates, (er, eg» ;x),
- ~ ~ -~
. can be written in the same complex notations in terms of (ey, e, ex)
: |
~ ~ " . i6
e. = e, oS 6 +e, sinb<=>e (4.2)
; c. = -6 sin® + e 6 ¢=> ie'® 3
, &g = - €, sin e, Cos 6 <=> ie ", (4.3)
b
Y Substvtut1ng these into the moment integral and using the Reynolds Transport
Theorem!? gives the following expression for the liquid moment coefficient:
[
M N1- h-f+(n+1) 1
1 ~ ~" ~" . > ~
Y T Ciy = %;. E g j {(xex + rer) x [(s - i)q + 2e x 3] (4.4)
n=0  “h-fen 0 - 4[R2 - 2X2]) F dF dX.
[)
Using Eqs. (3.16-3.18 and 3,20-3,22) with the aid of Eq. (3.27) permits
writing the last equation as
o
i [401-C (s-1)7 [(s2+1) (3n%f2)1C. 3[1+C (s-1)(s-1)%C
T CLM = r + r -
! 12 (vy+21) Y
; »
; 122 - af2 + 3|+ _2is  |(s%+1) (3n24+f2) _ 2s(s-i)f?2 | _ (4.5)
K. (v+21) 3 N2
»
. 128 i (s-i) (y-2i)s52f2 ad 9 (2)
L4 .
< ; 4ok Z ur : _ ’
‘j (v+2i) N* x k=odd k4T (v+24) Jl(kk) T JO(Ak)]
- N=1,2,3,...
Murphy3 derived the frozen liquid values of CLsy and C; ;q and these are given
by
Ca
7 7
N
N } ;" J-' 2 T e R TNCAT RS .- A A '.r" P .\.-_.'-_.'_\_.:-_.‘_-.,'\'_.},‘-,,_.‘-,:-,.‘ SO

My + 1 My = T Cy K e (4.1)
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A

I3
r
2 2 :
Cay = < 1-1[1+43“*f] (4.6)
2 3 -
A
2 L]
C oy =L+ 2(e2=1) 134 1902 + af2] . (4.7) :
LIM o
B 2 12 ‘U
|
For very slow motion (1 » 0) the liquid moment should approach these values. 3
Equation (4.5) shows that the limiting value of C (y as v+ 0 equals (e + -
[
i)/2. This agrees with the forzen liquid results when © = 0. When C. + « the =
liquid should act like a frozen liquid for all values of 1. It is easy to see )
that the liquid moment coefficients given by Equation (4.5) approach (in the .
limit of C.» = for A not a resonance value) the values for a frozen liquid, bf
The same limits, Fquations (4.6 - 4,7), are also found when C. and 1 are <
\ arbitrary but N becomes infinitely large. ¢
J
‘e
V. SOLUTION METHOD -
The equations of sections III and IV need to be solved over a wide range Zf
] of © for specific values of Dp, f, and N. This requires calculating the ratio N
JO(Ak)/Jl(Ak) of the zero and first order Bessel functions. For values of k fp
such “hat |Ak| < 50, the above ratio is obtained by simply dividing the values 0
found from power series expansions of each Bessel function. For larger values &-
of IAkl, an asymptotic expansion of the Bessel function ratio was used.!! N
Equation (4.5) is then used to find values of C ¢y and C (4. Experience has F
i shown that k ¢ 20 is sufficient to produce converged solutions. All ;}
computations were carried out on a VAX-8600 computer, N
) VI. DISCUSSION o
)
Figures 2 and 3 present plots of C gy and C 1y as functions of frequency 3
v
for f = 1.5, C. = 3.0, N =1, and € = 0 and 0.02. For zero damping, the =
maximum side moment is slightly larger than the maximum side moment for a :j'
small amount of undamping given by e = 0.02, The in-plane moment remains >
relatively unchanged due to the presence of the same undamping. This indi- )
cates that C y is insensitive to e for e near zero. -]
It was mentioned earlier that CLSM and CLIM approach the limiting values _:
for a frozen liquid, Eqs. (4.6-4.7), as C.» 0. An example of this for f = 2, ;”
N=1and e =0 is exhibited in Figures 4 and 5. Similar results are shown in )
Figures 6 and 7 for an increasing number of chambers N and a fixed C. = 3. -
0
8 N
S
L3
g.
A0
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Generally, it has been found that the frozen liquid 1imit is approached quite
rapidly with increasing values of N for typical values of C..

If v is a Stewartson eigenfrequency for the particular values fo, ko,

0
and No, then a resonant condition will occur at 1 = T whenever
f f
= 0 kg» k = 1,3,5,...
k N k0 N0 (6.1)
No, N = 1,2,3,00.

For an example of this phenomenon, consider the case of k0 =1, fo = 2, N0 =
1, €. = 3, and € = 0. These parameter values make the ratio of Equation (6.1)
equal to 2 and the first eigenfrequency v, = 0.5102. Figure 8 shows CLgm as a
function of © for k = 1, f = 10, and N = 1,5,10. The increase in CLsm for N =
5 is due to the eigenfrequency 1, = 0.5102 since the ratio in Eq. (6.1) is
again equal to 2. Hence for a fixed t, an increase in N can cause CLSM to
increase. The eigenvalues for the N = 1,10 cases lie outside the range of =
given in Figure 8, C qgu therefore decreases monotonically to the frozen
liquid value, which is zero for € = N, when N becomes sufficiently large.

The 155mm M825 projectile is shown in Figure 9. This projectile carries
a canister that is 1oaded with white phosphorous (WP) impregnated felt wedges.
Four angular ribs produce longitudinal quadrants within which felt wedges (116
per canister) are loaded. Aluminum foil spacers are located between each
wedge (as shown in Figure 9) and could produce a compartmentalization or
segmentation as modeled in this theory. When the WP is liquid (temperatures
above 44 deg C), flight instabilities have been recorded. Recent flight tests
have shown that the flight stability of the projectile can be improved by
using felt wedges with outer diameters that produce interference fits when
loaded into the canister.!2 The model given in this report is directed at a
fundamental understanding of the payloads used in the M325. The inclusion of
a drag force on the liquid caused by the permeable media provides a first step
in understanding the physics of these payloads.

Scheidegger!3 tabulated permeabilities of various substances and stated a
range for hair felt as 8.3 x 1078 ¢m? ¢ « 1.2 x 1075 cm2. For an M825-type
payload, nominal values for spin rate and kinematic viscosity are 100 Hz and
0.015 cm2/sec. Hence, a median drag coefficient, Crs is 2n/15 or approximate-

ly 1/2. Experiments should be conducted to determine the permeability, x, for
the type of felt and packing used in the M325 projectile. Investigations must
be conducted to verify if a linear, homogeneous formulation, using Darcy's
Law, is appropriate for spinning liguids. The present analysis extends prior
theories for liquid payloads and produces a simple model from which a clear
physical understanding is obtained, Additions to the present effort could
include the effects of fluid interaction with solid boundaries, radial
variations in C. and the nonisotropic character of Cr’
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VII. CONCLUSIONS

The 1liquid moment coefficients are computed for cylindrical cavities
which are fully-filled with a permeahle medium and impregnated with an invis-
c¢id liquid. These coefficients reflect the results of segmenting a given
cavity into N chambers with uniform height. The coefficients are then calcu-
lated as functions of coning frequency, fineness ratio, and the parameter Cr

usgq to represent the physics of a liquid flowing through the permeable
medi um,

If the range of coning frequencies does not contain any eigenfrequencies,
then the calculations plus theory indicate that the side moment approaches the
value for a frozen liquid as C. » 0 and/or N becomes large. However, a signi-

ficant increase in the side moment can occur for a particular N by choosing
the fineness ratio such that an eigenfrequency moves into the frequency range
of interest.
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¢ LIST OF SYMBOLS d
! y
a Maximum radial distance of the liquid-filled container (for a
cylinder, the radius, for a spheroid, the radial semi-axis)
CLIMj Imaginary part of CLM-; coefficient representing the liquid :
4 moment that causes rotagion in the plane of exp i¢j), J=1,2 !
i CLsm. Real part of C y.; coefficient representing the liquid moment .
, j ‘
; that causes rotation out of the plane of exp (i¢j), j=1,2 f
3 Cr Drag coefficient - ‘
) D, Drag term due porous media
'\ 8 8.8, Unit vectors along the earth-fixed cylindrical axes )
)
. 3x=5y’52 Unit vectors along the earth-fixed Cartesian axes
- f Fineness ratio, c/a, for a cylinder .
. N
A h Distance of center of gravity along symmetry axis from ;
N geometric center
N k Axial wave number "
Y . i¢. ;
A K I 30 (5 =2 1,2) G
€.T.9 B
J - 5
y K; Kjoe (i = 1,2)
‘ \
‘ .
;: Kjo Value of Kj at t =10
m Mass of the liquid in the container 2na2c;>L THr a cylinder;
b 4H62C9L/3 for a spheroid) é
" ML; + M7 Transverse liquid moment in the aeroballistic nonrolling system )
s
N Number of products in the X factor, Eq. (3.19)
: Nygs"yesNzE Earth-fixed components of a unit vector along the x-axis
' p Non-dimensional pressure perturbation as a function of r and x
r Radial coordinate in the earth-fixed cylindrical (x,r,8) system
[ n}
' R{} Real part of {} .
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o
o
™. s o+ )T, j = 1or2
b (eJ )TJ J
o U,V,W Non-dimensional velocity perturbation components in the earth-
A\ fixed cylindrical (x,r,8) system

3] >

L v Non-dimensional liquid velocity perturbation, Eq. (A.3)

5 R
’ v ,vr,ve Components of V in the earth-fixed cylindrical (x,r,8) system
)

4

- X Axial coordinate in the earth-fixed cylindrical (x,r,8) system
!
o XYZ Missile-fixed axes, the X-axis along the projectile's axis

of symmetry
Y ~~ -
;} XYZ Aeroballistic non-rolling axes, the Z-axis initially downward
z XeYeZe Earth-fixed axes, the Xg,-axis along the velocity vector,
LA Z, downward
! . K./K.)/¢., non-dimensionalized damping; j = 1,2
3 €5 (K3/K5)7 85 ping; J = 1,
oo
8 Azimuthal coordinate in the earth-fixed cylindrical
(x,r,8) system

.‘
B {
rij v Kinematic viscosity of the liquid ‘
v - .

A £ KeSe
x: A Defined in Eq. (3.27)

R

N oL Liquid density

I‘
o T $j/$, non-dimensionalized frequency; j = 1,2

ﬁ & Spin rate with respect to inertial axis, assumed positive
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4. How specifically, is the report being used? (Information source, design
data, procedure, source of ideas, etc.)

S. Has the information in this report led to any quantitative savings as far
as man-hours or dollars saved, operating costs avoided or efficiencies achieved,
etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future

reports? (Indicate changes to organization, technical content, format, etc.)

Name
CURRENT Organization
ADDRESS Kidress

City, State, Zip

7. 1f indicating a Change of Address or Address Correction, please provide the
New or Correct Address in Block 6 above and the 0ld or Incorrect address below.

Name
OLD Organization
ADDRESS

Address

City, State, 2ip

(Remove this sheet, fold as indicated, staple or tape closed, and mail.)
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